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A B S T R A C T   

Developing new materials with target properties via the traditional trial-and-error ways is cost-inefficient, and 
sometimes ends up with fruitlessness, therefore, simulation-driven materials design plays an important role in 
the past decades. Nevertheless, the advent of the era of data-driven material science requires an intelligent 
computational platform to accelerate the discovery and design for advanced materials. Here, we present an open- 
source computational platform named as ALKEMIE, acronyms for Artificial Learning and Knowledge Enhanced 
Materials Informatics Engineering, which enables easy access of data-driven techniques to broad communities. 
ALKEMIE is incorporated with three key components for the computational design of materials for the forth-
coming data-driven sciences: data generation via high-throughput calculations, data management and data 
mining via machine learning models. Briefly speaking, the high-throughput calculations in ALKEMIE are 
implemented through the integration of automatic frameworks of model constructions, calculation performances 
and data analysis. And the used high-level application programming interface for the database makes the data 
mining through machine learning more applicable in material science. In particular, ALKEMIE is integrated with 
a module for the generation of machine-learned interatomic potential for large-scale molecular dynamic simu-
lations where the dataset is obtained from high-throughput first-principles calculations. More importantly, 
ALKEMIE has an elaborately designed user-friendly graphical user-interface which makes the workflow and 
dataflow more maneuverable and transparent, facilitating its easy-to-use for scientists with broad backgrounds. 
Finally, the main characters of ALKEMIE are demonstrated using three computational examples.   

1. Introduction 

For centuries, the development of material science (old saying as 
metallurgy) mainly relies on the experience based on the experiment, 
then come the general theories such as the law of thermodynamics. The 
advancement of computer hardwares and softwares implementing the 
density functional theory and molecular dynamics, etc, leads to the 
computer simulation era of material science. The emergence of the big 
data technology facilitates the shift of the material science to the fourth 
paradigm, i.e., the data-driven stage [1]. The coming of the data-driven 
material science presents a very promising and inspiring pathway for the 
faster and more cost-efficient design and deployment of advanced ma-
terials compared to the traditional trial-and-error method. For the data- 
driven paradigm of material science, construction of relevant in-
frastructures is clearly needed, which has been greatly promoted by the 
Materials Genome Initiative (MGI) launched in 2011 [2]. In recent 

years, following the route presented in MGI, the development of 
computational tools and their applications in materials design are 
springing up [3–14]. A general material design platform combining the 
data generation, data management and data mining is very desirable for 
the material designers with wide backgrounds. 

Extensive efforts have been put on the frameworks or codes devel-
opment considering the high-throughput calculation (HTC) [15–20], 
material data management [21–23] and machine learning in materials 
science [24–30]. Materials Project [31] is a well-known pioneer for HTC 
in material science, and its frameworks including Pymatgen [32], Fire-
Works [33], Custodian [34], and Atomate [35] which enable the auto-
matic computation are now widely used in the community. AFLOWπ 
[36] is another minimalist framework for high-throughput first-princi-
ples calculations, which supports the data generation, error control, 
curation and archiving of the data, and post-processing tools for analysis 
and visualization. AiiDA (automated interactive infrastructure and 
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database) [37] is also an open-source python infrastructure to help re-
searchers with automating, managing, persisting, sharing and repro-
ducing the complex workflows associated with modern computational 
science and data. In addition, there are also other codes or platforms, 
such as Atom simulation environment (ASE) [38], Pylada [39], Imeall 
[40] and MPInterfaces [41], have been developed for HTC. Meanwhile, 
the online material databases expand very fast in recent years, 
benefiting from the application of HTC. Examples of such databases are 
the Materials Project [31], OQMD (Open Quantum Materials Database) 
[42], AFLOWLIB consortium (Automatic Flow Lib) [43,44], NOMAD 
[45], ICSD (Inorganic experimental) [46], COD [47], CMR (ASE-data-
base) [48] and Materials Cloud [37], etc. The rapidly increasing and 
easily available data in these depositories make the application of the 
data mining via machine leaning (ML) possible. In addition to the gen-
eral ML codes such as scikit-learn [49], TensorFlow [50] and PyTorch 
[51], a few other codes have been developed specifically for material 
science with the general ML codes included as the engines. For exam-
ples, AFLOW-ML [52] is a representational-state-transfer-architecture 
API for machine-learning predictions of materials properties; SISSO 
[53], written in FORTRAN 90, is a compressed-sensing method for 
identifying the best low-dimensional descriptor in an immensity of 
offered candidates; MatMiner [54] is another platform to facilitate data- 
driven methods for analyzing and predicting materials properties based 
on scikit-learn. In addition, there are many other machine learning tools 
used for specific fields in material science, for example, PROphet [55], 
COMBO [56], Magpie [57] and JARVIS-ML [58], etc. 

As far as we know, most of the MGI related codes are designed for one 
or two of the three components which are the generation, management 
and mining of the data in the data-driven materials design. Here we 
introduce a general computational platform ALKEMIE (Artificial 
Learning and Knowledge Enhanced Materials Informatics Engineering), 
which works like a normal application software while covers all of the 
three components of the data flow. ALKEMIE has incorporated many 
well-known open-source processing tools, computation engines at 
different length/time scales, etc, and more importantly, it is equipped 
with a very friendly graphical user interface which makes the workflow 
and dataflow more manageable and transparent. Moreover, ALKEMIE is 
greatly enhanced by a well-designed module for machine-learned 
interatomic potential generation, which bridges the first-principles cal-
culations and classic molecular dynamics simulations. 

This paper is organized as follows. Firstly, the main features of 
ALKEMIE are presented in Section 2. Next, in Section 3, we describe the 
design philosophy and architecture of ALKEMIE. In Section 4, the core 
modules in ALKEMIE are introduced in detail. Finally, in Section 5, three 
examples are used to demonstrate the main features of ALKEMIE: high- 
throughput first-principles calculation with 103 tasks, screening of the 

easily alloying elements in copper in terms of the formation energy of 
the alloyed system, and the generation of the machine-learned inter-
atomic potential for Sb. 

2. Main features of ALKEMIE 

The main features of ALKEMIE are summarized in Fig. 1, more 
detailed explanations are as follows:  

• High-throughput: ALKEMIE can manage ⩾103 tasks in one 
workflow.  

• Automation: The entire process of HTC, from model construction, 
calculation to data analysis, can be run automatically by reasonably- 
defined default parameters without human interventions.  

• Visualization: A user-friendly graphical user interface (GUI), based 
on Orange [59] and PyQt [60], is designed for ALKEMIE, allowing 
users to deal with tasks and data as ‘seeing’ them. This GUI should be 
very beneficial for the nonexperts or beginners.  

• Workflows: Based on the Materials Project [31], we set up many 
general scientific workflows with default parameters that have suf-
ficient accuracy. Users can define their own workflows, or use the 
default workflows with self-defined parameters.  

• Database: All data in the workflows are stored in different types of 
databases, such as (atomic) geometry database, task database, 
property database and fingerprint database for machine learning, 
etc.  

• Machine Learning: ALKEMIE is integrated many general machine 
learning tools, such as scikit-learn, PyTorch and TensorFlow, to 
facilitate data mining for specific material issues.  

• Plug-in mode: ALKEMIE has various interfaces with simulation 
softwares at different time/length scales. And more codes will be 
included in future version of ALKEMIE. 

3. Design philosophy and architecture of ALKEMIE 

As mentioned in the Introduction section, many codes/frameworks 
have been built following the culture of MGI. When we start to design a 
general platform, python is chosen as the main programming language 
to make full use of its ecosystem and also because the acknowledged 
open-source MGI-related codes are mainly written in python. Our 
ambition in designing ALKEMIE is to expand the functions of some 
available codes and to build its own advantages of modules at the same 
time. 

ALKEMIE has a client–server model: the client can be installed in a 
personal computer with any mainstream operating system such as 
Windows, Linux or MacOS; the server can be deployed in a remote 

Fig. 1. The main features of ALKEMIE.  
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cluster. Users can switch between different clusters conveniently 
through the client using a switch button. At the (remote) clusters, 
ALKEMIE will open a daemon process and listening port, which is also 
the basic requirement for clients to achieve automatic access to cluster. 
In addition, the server of ALKEMIE can handle different resource man-
agement systems including PBS, SLURM, and LTRM, and has advanced 
APIs to customize other management systems. 

For the data generation process, before the start of the calculation, 
the first thing to deal with is constructing the geometries of the material, 
thus in ALKEMIE we define the Builder module. Users can easily intro-
duce the dopant/grain-boundary to the systems automatically, or import 
a batch of existed structures, both of which can be performed in a high- 
throughput way. The built geometry can be viewed via a Viewer plug-in 
widget, then the user can double check the structure or export it for 
presentation. Afterwards, users can define a specific task to compute the 
needed property which is called workflow. In ALKEMIE, a few 
commonly used workflows are pre-defined. The input files for a 
computation software and a specific workflow can be generated auto-
matically with the parameter set by default or by hand. As all inputs for a 
computation software are ready, the jobs can be submitted to the server. 
We incorporate the open-source codes for job control/monitor, error 
correction as in the Materials Project, while we designed a special GUI 
for ALKEMIE. When the high-throughput calculations are finished, 
simple data analysis can be done, such as analyzing the energy, volume, 
and band gap distribution in the computed materials. Also, Plotter in 
ALKEMIE can handle the plot of density of states, E–V curve or band 
structures. For now, all these functions are fully available for the first- 
principles code VASP [61]. 

For the data management, firstly, inputs/outputs of the computation 
software, calculation parameters, scientific workflows, and the calcu-
lated properties, should be saved properly. Then the standardization and 
pre-processing of the data are needed before conducting data mining. In 
ALKEMIE, we choose MongoDB [62] as our core database. This database 
uses a simple and understandable JSON format file to save data, which is 

convenient for users to store and query data. Moreover, for researchers, 
data can be either shared or privatized, so we provide each user with two 
types of databases, i.e., a separated private database and a shared 
database. By default, the user creates a private database while regis-
tering a new account. And users can apply to get access to the shared 
database, where they may provide or get shared data. 

For the data mining part, ALKEMIE integrates the current popular 
machine learning package Tensorflow, Pytorch and scikit-learn, and 
provides high-level API for users to choose the appropriate machine 
learning model (SVM, DNN, CNN, RNN, etc.) and machine learning 
convergence algorithm (Adam [63], Gradient descent [64] and so on). In 
the community of computational material science, molecular dynamic 
(MD) is a very powerful atomic-scale simulation method, covering a 
much longer time-scale and larger length-scale than the first-principles 
calculations. Nevertheless, MD simulations always lack accurate inter-
atomic potentials to describe the interactions among atoms in materials, 
which is a well-known tough problem in MD community. Therefore, it is 
most desirable to develop a technique that can efficiently establish 
interatomic potentials for large-scale MD simulation. Herein, we 
designed a module for the generation of interatomic potentials via ma-
chine leaning methods using datasets from the accurate first-principles 
calculations, in which way bridges first-principles calculations and 
classic molecular dynamic simulations. This module has been imple-
mented in the calculator of ALKEMIE. 

More importantly, given the interdisciplinary character of the data- 
driven techniques as indicated above, it is very desirable to provide a 
user-friendly GUI for the three processes in the data flow. 

The architecture of ALKEMIE is shown in Fig. 2. The overall archi-
tecture is divided into four layers, which are user layer, graphical user 
interface (GUI) layer, kernel layer and plug-in layer. Firstly, thanks to 
python’s compatibility, ALKEMIE can be installed on the three main-
stream operating system platforms (Linux, Windows and MacOS) 
through PyPi’s open source repositories [65]. The second layer is the 
GUI layer, researchers can run all the kernel programs on the GUI layer 

Fig. 2. The architecture diagram of ALKEMIE.  
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through the advanced application programming interface (API). The 
GUI is completely independent from the kernel, and they are connected 
through the specified information pipelines. This independency facili-
tates future developments of more visualization functions. The next 
layer is the kernel layer, which is divided into four parts: job manage-
ment, computing engine, I/O (input and output) processing, and ma-
chine learning. Further, there are two types of API in each part: one API 
can be called by the GUI layer, and the other Lib-API can be used to 
integrate other functions. The bottom layer is a modular plug-in layer 
that allows users to add their own computation software, which can be 
called by computing engine through Lib-API. The plug-in layer can 
include commercial software that requires the license to use and open- 
source software that conforms to the corresponding open-source rules. 
Those functions of ALKEMIE have been tested by the python standard 
test library unittest [66]. 

Since ALKEMIE is designed as a platform for general use, the users 
can add their own code to the platform conveniently following the steps 
a)–c).  

• a) Firstly, to add a new code to ALKEMIE, the users should create a 
new folder in the directory ‘$HOME/Alkemiems/widgets’, and in this 
new folder, a file named ‘__init__.py’ should be included which con-
tains the code’s name, icon and other basic information.  

• b) Secondly, the users can design workflows for this code to achieve 
desirable functions of pre-processing, calculations or post- 
processing. The user-defined class must inherit from BaseTasks, 
which is a high-level API built into ALKEMIE to solve the relationship 
between multi subtasks. Further, it is essential to follow ALKEMIE’s 
database architecture and organize all input/output of the compu-
tation in a JSON format stored in MongoDB.  

• c) Finally, one may build the workflow widget based on our pre- 
defined OWBaseWf API, making the workflow visible in the main 
GUI of ALKEMIE. Some attributes of the class must be specified, such 
as the name, description, icon, input, output, workflow function 
defined in step (b), etc. 

4. Details of the core components of ALKEMIE 

In this section, we will introduce three main components of ALKE-
MIE, which are visualized high-throughput workflow, database, and 
machine learning. 

4.1. Visualized high-throughput workflow in ALKEMIE 

The main GUI of the ALKEMIE is shown in Fig. 3, which contains 
login, welcome and main working interface. Firstly, users of the ALKE-
MIE client will get a license for the ALKEMIE server side, to start the 
software and to get access to the remote cluster, as shown in Fig. 3 (a). 
The welcome page (Fig. 3 (b)) contains common contents such as 
creating a new project, loading the last saved work, and the tutorial. 
After the welcome page, it is the main working interface, which is 
divided into two parts: the left part is the software tool bar; the right part 
is the working panel. One example of a high-throughput workflow is also 
shown in Fig. 3 (c). 

The working panel of the main GUI of ALKEMIE is very user-friendly 
and interactive, where a high-throughput work can be conveniently 
designed and setup. For a clearer presentation of the automatic work-
flows, different stages of the flow are shown with widget in different 
colors/shapes (as shown in Fig. 3 (c)), where the input layer is shown 
using purple circle, workflow layer is represented by blue hexagon, 
remote-job management layer is in green, while data analysis layer is in 
orange, etc. In the working panel, the widget can be ‘clicked’ to 
configure the corresponding functions, and users can simply ‘draw’ a 
‘line’ to make different functions connected, activating the ‘flow’. The 
line-connection between different layers will automatically start the 
core of one layer to run its corresponding functions and transfer the 
output to the next layer. Thus, using the intelligent working panel of 
ALKEMIE, the high-throughput work can be easily setup and managed. 

Fig. 4 illustrates some details of the widgets. The widget Builder in 
Fig. 4 (a) can be used to build the grain boundary, introduce the va-
cancy/dopant into arbitrary site of the parent lattice, etc. In Fig. 4 (a), 
one carbon atom is doped at fraction coordinate (0.5, 0.5, 0.5) in the 
lattice of Ge2Sb2Te5. Users can export the doping structure, or they can 
press send-data button to add this model to HTC workflow. Fig. 4 (b) 
shows the detail of the scientific workflow for band structure calcula-
tion, including workflow parameters configuration panel (left) and 
flowchart of this workflow (right). The scientific workflow can solve the 
nesting relationship of multi-tasks. Users can freely design their own 
workflows, or build the workflows based on the built-in ones, such as the 
VaspBase for VASP users. Each workflow contains three types of pa-
rameters: the first one is the software-related environmental variables, 
the second type is the internal relational parameters of the workflow, 
and the third one is the parameter needed by the software to run sim-
ulations. For some workflows using VASP code, such as the static 
calculation, structural optimization, as well as the calculations of 

Fig. 3. The main GUI of ALKEMIE and an example of the visualized high-throughput automatic calculation. For clarity, figure (a)–(c) is shown separately as 
Fig. S1–S3 in the Supplemental Materials. 
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density of states, band structure or elastic tensor, ALKEMIE provides 
some pre-tested and reliable default settings, which should be very 
helpful for beginners or nonexperts. More workflows with various 
computational softwares will be included in the future version of 
ALKEMIE. The WorkState widget is to visualize the working status of 
tasks in remote servers, as shown in Fig. 4 (c). This widget can display all 
tasks in different running states in different colors, while details of the 
job status will be shown after a ‘click’. The WorkState widget integrates 
the well-known Firework in Materials Project, but we designed a brand 

new GUI for ALKEMIE. 

4.2. Database in ALKEMIE 

The structure of the core database of ALKEMIE (named as ALKEMIE 
Data-Vault or ALKEMIE-DV) is shown in Fig. 5. As one user account is 
created, all login information is stored in the UserDatabase and a private 
database is initialized simultaneously. All data related to high- 
throughput calculations are stored in this private database. However, 

Fig. 4. The detail and parameter configuration for (a) widget Builder, (b) band structure workflow, (c) work state, (d) data table and (e) band structure plotter. For 
clarity, figure (a)–(e) is shown separately as Fig. S4–S8 in the Supplemental Materials. 

Fig. 5. The structure of the database in ALKEMIE (ALKEMIE DATA VAULT).  
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when the amount of data increases, and also due to different data types 
having different data formats, the query efficiency can not be guaran-
teed. To solve these problems, we divided the private database into three 
types of sub-databases based on the pmatgen-db of Materials Project[31] 
and inspired by the ‘key values’ design of AFLOWLIB database [44]. The 
content in each sub-database is briefly illustrated in Fig. 5. 

• Geometry Database: This sub-database contains the material ge-
ometries involved in each computation process, including the orig-
inal geometries and optimized ones. Further, the chemical 
environment of each atom is also analyzed and saved, prepared for 
data mining and machine learning.  

• Task Database: Task database is used to store job status, the linkage 
between tasks, and the job running details from the hardware, such 
as the time cost. Overall, this database is for the real-time monitoring 
of the workflows.  

• Property Database: The property database stores the calculation 
results in the standardized data format, ready for further data anal-
ysis or data visualization. The property database contains basic 
property data for quick query (such as energy, volume, band gap, 
etc.). Fig. 4 (d) shows the review of data in the form of Table. In 
addition, large data files are stored via Gridfs in MongoDB, for 
example, the DOS or band profile for each atom and atomic orbits. 

Users can share their own data after labeling to claim the ownership, 
and the data label has the format: alkemie.date.classification/user_defi-
ned_label.number. This label has two parts divided by a slash. The first 
part will be automatically filled in and the field of ‘alkemie’ is the data 
source identification, which cannot be changed. ‘date’ is the instant time 
generated through the time module in python with the accuracy of 
microseconds. ‘classification’ has 4 types: geometry, task, property and 
others, corresponding to the above three types of databases and unca-
tegorized data. The second part is user definable, where ‘user_defined_-
label’ is a custom label within 20 characters and ‘number’ is an 
accumulating number index. ‘date’ and ‘number’ can make sure the 
uniqueness of the label for the shared data, ‘classification’ and ‘user_de-
fined_label’ facilitate the data query. Further, this label defined in 
ALKEMIE can be easily expanded to the DOI format by adding DOI 
identification number and organization identification number at the 
front, and thus the database can be shared to a wide community. The 
data added to the shared database will be double checked by the 
administrator. 

For the database in ALKEMIE, in addition to the fundamental storage 
function, we also provide a basic search engine for material properties 
named as BSEngine, and data analysis tools. For different computing 
softwares, users can inherit functions from BSEngine and develop their 
own search engine and data analysis method. For example, on one hand, 
VASPBSEngine can query the number of atoms, energy, volume and band 
gap, returning the data with JSON format for analysis, as shown in Fig. 4 
(d). On the other hand, it can also query the data of DOS, PDOS and 
PBANDS, and return the data with python-dictionary format for further 
analysis. Fig. 4 (e) shows the output of the widget for plotting the band 
structure which is designed for the automatic plotting of the multiple 
band structures based on the data provided by VASPBSEngine. 

4.3. Machine learning in ALKEMIE 

For machine learning, the quality of the input data almost de-
termines the accuracy of the machine learned model. In material sci-
ence, the material-property data can be easily transformed into the 
applicable format for machine learning by means of matrix transpose 
and normalization. However, for the material structure information, 
normally specific descriptors are needed to analyze the atomic envi-
ronment around a chosen atom, which thus transform the geometry 
structure into the high-quality initial data for machine learning. In 
ALKEMIE, FingerSTP is designed to specify the environmental descriptor 

for atoms of materials. So far, we have included Behler’s and Cheby-
shev’s methods as the structural fingerprints [67,68]. The information 
related to the atomic structure includes the atomic coordinates, as well 
as the force and energy corresponding to each atom. Therefore, we 
choose the extended XSF format to store all these atomic structure in-
formation [69]. Ultimately, with the initial structure and the chosen 
descriptor, users can quickly parse the structure information into binary 
data through a generator named GenerateXSF, and specify parameters to 
convert data into TFdata format or Pytorch pipeline format if needed. 

After the preparation of input datasets, users can choose their needed 
machine learning algorithms in ALKEMIE that has incorporated many 
popular machining learning packages including scikit-learn, Pytorch, 
and Tensorflow. More importantly, in ALKEMIE, we have developed 
advanced high-level API for Pytorch in order to reduce the number of 
hyperparameters that need to be specified during the training process. If 
a machine learning model is trained and tested to be accurate, it can be 
saved and deployed to predict the material property directly in a new 
dataset. Inspired by the atom simulation environment (ASE), we sum-
marize the accurate models into a calculator-lib, for the convenience of 
their re-loading. For instance, in ALKEMIE, we have trained a potential 
related calculator named PmCalculator, through which one can calculate 
the energy and force of each atom during large scale MD simulations. 

5. Examples 

In this section, we present a few case studies to illustrate the main 
features of ALKEMIE, including the high-throughput calculations and 
machine learning functions. 

5.1. High-throughput static calculation workflows using VASP. 

In order to demonstrate the easy-to-use, reliability and efficiency of 
the high-throughput calculations in ALKEMIE, 1000 binary compounds 
are randomly chosen from the widely used Inorganic Crystal Structure 
Database (ICSD) [46], and the formula as well as the basic character of 
these compounds can be seen in Table S1 of the Supplemental Materials. 
Then, we performed HT cohesive energy calculations on these com-
pounds using VASP, and the flowchart of the workflow is shown in 
Fig. S9 in Supplemental Materials. By using the widgets VASPBSEngine 
and DataAnalyzer which have integrated the open-source plotting pack-
ages Matplotlib [70] and Seaborn [71], the data from the HT calcula-
tions, such as the energy, volume, and band gaps, are summarized in 
Fig. 6. Through this example, the reliability of the high-throughput 
calculations in ALKEMIE can be verified, and in practice the number 
of tasks that ALKEMIE can manage in HT calculations can be much more 
than 1000 if needed. 

5.2. High-throughput screening of the easy-alloying elements in Cu 

High-throughput screening of an optimal dopant or a suitable 
alloying element for a target function of materials is one of the most 
important strategies to design the new materials [72,17,73]. In our 
previous work, we employed the HTC workflow in ALKEMIE to get the 
most stable carbon configurations on the grain boundary of poly-
crystalline GeSb2Te4 at different doping concentrations [74]. In addi-
tion, with various HTC workflows in ALKEMIE the optimal dopants for 
Sb2Te3 phase-change memory material are found, and the excellent 
performance of the screened system has been confirmed by experiments 
[75]. Here we present a high-throughput formation energy workflow to 
screen the most energy favorable structure of coper alloys with different 
alloying element, and the flowchart of the workflow is shown in Fig. S10 
in the Supplemental Materials. All the 87 elements in the periodic table 
except for the elements that lack of first-principles potential (marked as 
gray in Fig. 7 (a)) are calculated. The formation energy for alloying the 
element in Cu at the concentration of 0.925% is calculated using Eq. (1). 
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Ef [x] = Etot[x] − Etot[bulk] − nμc (1)  

where Etot[x] and Etot[bulk] are the total energy of the supercell with and 
without the alloying element, respectively. n represents the number of 

the alloyed atoms, and μc is the chemical potential of the alloying ele-
ments, which can also be calculated in a high-throughput workflow. The 
calculated formation energy is summarized in Fig. 7 (b), and 56 alloyed 
elements (marked as white in Fig. 7 (a)) have negative formation 

Fig. 6. The result of the workflow of HT static calculation on 1000 binary compounds employing VASP. (a) The scatter plot and distribution of the calculated 
energies and volumes. (b) The histogram of all no-zero band gaps of the compounds. 

Fig. 7. (a) Illustration of the not calculated elements (gray), the energetically unstable (red) and stable elements (white) in Cu, respectively. (b) The formation energy 
of the 87 alloying elements. (c) The average bond length and (d) lattice constant of the alloyed compounds, and the dashed lines indicate the value of the pure Cu. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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energies, indicating an easy-soluble in Cu. Further, Fig. 7 (c) shows that 
overall the average bond length of X-Cu increases with the atomic radius 
of X (X represents the alloying element). However, a few alloying ele-
ments with small atomic radius lead to longer bond-length than Cu-Cu, 
the underlying mechanism should be correlated to the chemical effects 
and will be analyzed in detail in future study. The relationship between 
the lattice constant and the atomic radius is shown in Fig. 7 (d). It is 
worth noting that the replacement of Cu using some larger-radius atoms 
will shorten the lattice constant, and this anomalous lattice shrinkage 
should be induced by the formation of the shorter ionic bonds as a result 
of the electron transfer from larger-radius alloyed-elemental atom to its 
neighboring atom with different electronegativity, as shown in our 
previous work [76]. In a word, here we show that using ALKEMIE it is 
convenient to define the workflow to evaluate the alloying effects of 
different elements, which should be helpful for the defect engineering of 
materials. 

5.3. Machine-learned potential 

As materials HTC and materials database grow in size and scope, the 
role of machine learning methods in building predictive models becomes 
more significant. In our previous work, we designed a HTC for the 
vacancy-formation energy in the crystalline/amorphous structure, and 
connected these energy data to the bonding environment by using the 
machine learning method [77]. Nowadays, developing an accurate 
interatomic potential for classic molecular dynamic simulations by using 
machine learning algorithm combined with high-throughput first-prin-
ciples calculations, attracts growing attentions of researchers. Sosso 

Gabriele [78], Behler Jörg [68], Mocanu Felix [79], Deringer Volker 
[80] and Csányi, Gábor [81] have constructed many models with 
different algorithms and various descriptors to develop the interatomic 
potential. In this example, we introduce a potential generation strategy 
by combining the deep neutral network (DNN) algorithm with an 
‘extended’ Behler’s symmetry function where we added two descriptors, 
i.e., distance scaling factor and the number of neighboring atoms, on the 
basis of the original function. Here, we will show the basic procedure of 
this potential generation, and the details will be introduced in the future. 
The flowchart of the workflow is shown in Fig. S11 in the Supplemental 
Materials. 

The generation of the interatomic potential for Sb, a candidate for 
phase-change memory materials [82–84], is taken as the example. 
Firstly, a total of 22 inequivalent Sb crystalline configurations are 
collected from three databases (Materials Project, AFLOW-lib and 
ALKEMIE-DV), relaxed by the optimize-workflow. Then HT ab initio mo-
lecular dynamics (AIMD) simulation at different temperature are per-
formed using the Sb supercells, and finally 3323 structures comprising of 
crystal (73.131%), amorphous (7.446%) and liquid (19.423%) states are 
extracted as the data set, as shown in Fig. 8 (a). The parameters of the 
Behler’s symmetry function used here are listed in Table 1, and Gen-
erateXSF in ALKEMIE converts the 3323 structures into a 3323 * 260 
matrix using these symmetry functions and stores it in a file with the 
format that Pytorch can read directly. Afterwards, we choose the deep 
learning model in ALKEMIE to train the potential. The number of hidden 
layers is set as 7 and the number of nodes in each layer are 1000, 1000, 
700, 500, 100, 50, 10, respectively. The batch size and dropout are 1280 
and 0.3, respectively; the activation function used is tanh. The loss value 

Fig. 8. (a) The constitution of the input dataset. (b) The loss values in training progress. (c) Comparison of the energy predicted by the DNN potential with the 
corresponding energy by DFT computation. (d) The partial pair distribution function by AIMD (blue) and DNN potential (red). (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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in the training is shown in Fig. 8 (b), and the mean absolute error (MAE) 
of energy and force is 0.0045 per atom. Fig. 8 (c) compares of the energy 
of various atomic structures predicted by the DNN potential with those 
computed by DFT, and very good agreement is clearly seen for both the 
energy data and their distribution. Finally, we export this DNN model 
(potential) to the PmCalculator, and run the classic molecular dynamics 
simulation with the ASE-MD software which is also integrated in 
ALKEMIE. As shown in Fig. 8 (d), the radial distribution function (RDF) 
obtained by the MD with DNN potential and the AIMD exhibits good 
agreement. The features of RDF reveal that the DNN potential accurately 
locates the first and second coordinate shell (corresponding to the po-
sition of the two high peaks in RDF) of the Sb atoms. However, the in-
tensity of the peaks shows discrepant between MD and AIMD, mainly 
due to the displacements of the atoms caused by the less accurate forces 
on the atoms during MD simulations. This less-accurate force issue in 
DNN potential development might be solved by adjusting the hyper-
parameters in the machine learning model and the constitution of the 
input dataset, as we will show in detail in future work. Overall, in 
ALKEMIE, we have packaged a module that standardizes and simplifies 
the process of interatomic potential fitting based on DNN. 

6. Conclusions 

In summary, here we have presented an open-source computational 
platform ALKEMIE, which facilitates the data generation via high- 
throughput calculations, data management with the private/shared 
database, and data mining through machine learning. In ALKEMIE, we 
have integrated and redesigned the popular open-source codes and 
frameworks in computational materials science, while more impor-
tantly, we designed many new functions/tools to make ALKEMIE more 
general, easy-to-use and intelligent. The main ‘keywords’ of ALKEMIE 
include high-throughput calculation, automation, visualization, work-
flow, database, machine learning and plug-in mode. One of most striking 
features of ALKEMIE is its extremely user-friendly GUI, which makes the 
high-throughput calculations and workflows ‘visible’ and very conve-
nient to design, manage and monitor. For data management in ALKE-
MIE, BSEngine is defined to make the searching of the calculated data 
efficiently in model database, task database, property database and 
sharing database. In addition, some smart data analysis tools are 

included in ALKEMIE. More importantly, for the machine learning 
functions in ALKEMIE, GenerateXSF, machine learning model API and 
Pmcalculator make the dataset preparation, model training, and model 
re-load more conveniently in machine learning application. Particularly, 
ALKEMIE is featured in the machine-learned interatomic potential 
development for classic molecular dynamic simulation. We demon-
strated the main features of ALKEMIE by using three case studies. 

To conclude, ALKEMIE will bring the data-driven techniques for 
materials designs to a broader community even for the beginners and 
nonexperts, stimulating the application of these techniques to design 
new material at less cost. The under-development version of ALKEMIE 
will be interfaced with more computational softwares at different 
length/time scales, and cross-scale modeling function will be designed 
as well. 

7. Data availability 

The raw/processed data required to reproduce these findings cannot 
be shared at this time as the data also forms part of an ongoing study. 
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